O-PSI: Delegated Private Set Intersection on Outsourced Datasets
نویسندگان
چکیده
Private set intersection (PSI) has a wide range of applications such as privacy-preserving data mining. With the advent of cloud computing it is now desirable to take advantage of the storage and computation capabilities of the cloud to outsource datasets and delegate PSI computation. In this paper we design OPSI, a protocol for delegated private set intersection on outsourced datasets based on a novel point-value polynomial representation. Our protocol allows multiple clients to independently prepare and upload their private datasets to a server, and then ask the server to calculate their intersection. The protocol ensures that intersections can only be calculated with the permission of all clients and that datasets and results remain completely confidential from the server. Once datasets are outsourced, the protocol supports an unlimited number of intersections with no need to download them or prepare them again for computation. Our protocol is efficient and has computation and communication costs linear to the cardinality of the datasets. We also provide a formal security analysis of the protocol.
منابع مشابه
On the Security of O-PSI a Delegated Private Set Intersection on Outsourced Datasets (Extended Version)
In recent years, determining the common information privately and efficiently between two mutually mistrusting parties have become an important issue in social networks. Many Private set intersection (PSI) protocols have been introduced to address this issue. By applying these protocols, two parties can compute the intersection between their sets without disclosing any information about compone...
متن کاملVD-PSI: Verifiable Delegated Private Set Intersection on Outsourced Private Datasets
Private set intersection (PSI) protocols have many real world applications. With the emergence of cloud computing the need arises to carry out PSI on outsourced datasets where the computation is delegated to the cloud. However, due to the possibility of cloud misbehaviors, it is essential to verify the integrity of any outsourced datasets, and result of delegated computation. Verifiable Computa...
متن کاملEfficient Delegated Private Set Intersection on Outsourced Private Datasets
Private set intersection (PSI) is an essential cryptographic protocol that has many real world applications. As cloud computing power and popularity have been swiftly growing, it is now desirable to leverage the cloud to store private datasets and delegate PSI computation to it. Although a set of efficient PSI protocols have been designed, none support outsourcing of the datasets and the comput...
متن کاملPrivate Projections & Variants
There are many realistic settings where two mutually suspicious parties need to share some specific information while keeping everything else private. Various privacy-preserving techniques (such as Private Set Intersection) have been proposed as general solutions. Based on timely real-world examples, this paper motivates the need for a new privacy tool, called Private Set Intersection with Proj...
متن کاملBounded Size-Hiding Private Set Intersection
Private Set Intersection (PSI) and other private set operations have many current and emerging applications. Numerous PSI techniques have been proposed that vary widely in terms of underlying cryptographic primitives, security assumptions as well as complexity. One recent strand of PSI-related research focused on an additional privacy property of hiding participants’ input sizes. Despite some i...
متن کامل